
1 Challenge the future 

Self-Healing in Mn+1AXn Phase 

Ceramics 

A.-S. Farle, W. G. Sloof, and S. van der Zwaag 
Delft University of Technology  

Department of Materials Science and Engineering 
Mekelweg 2, 2628 CD Delft, The Netherlands 



2 Challenge the future 

Outline 

 Concept of Self-Healing Materials 

 

 MAX-Phase Ceramics 

 

 Self-Healing in Ti2AlC & Ti3AlC2 

 

 Other Self-Healing MAX-Phases? 

 

 Summary 

 



3 Challenge the future 

Concept of Self-

Healing Materials 



4 Challenge the future 
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Self-Healing Ambitions  

multiple healing 

Time 

Performance 

original 
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Multiple self healing 

Drop should be compared 

 to effect of ‘safety factor’ 
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Concrete bridge less than 50 years old 
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Self-Healing Bridge in Amsterdam 

multiple healing 

van Hees, TUD  

Nearly 300 years old 
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Concept of Self-Healing Materials 

Schematic illustration of the damage development in a 
classical material (black line), an ideal self-healing material 
(blue line), and a realistic self healing material (red line)  

S. van der Zwaag (2007) 
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Design your Self Healing Material 

Requirements 
 

 Flow to the crack 

 

 Crack filling 

 

 Bonding to crack faces 

 Polymers: 

 

 Asphalt:  

 

 Concrete: 

 

 Ceramics:  

Micro-capsules or  
chemical reactions 

Induction heating 

bacteria 

??? 
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Self-Healing of Oxide Ceramics with 

(inter-)metallic Particles 

10 μm 

10 µm Al2O3 

Al2O3 
matrix 

SiC Crack induced 
by indentation 
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Self-Healing of Oxide Ceramics 

with (inter-)metallic Particles 

1 μm 

SiO2  by X-ray Micro Analysis  
 (EDS) 1300 ºC in Air for 6 hrs 

  10 μm 

Al and Oxygen, small content of Si 

Al, O & Si 
predomina

nt 

Unhealed crack 

Synthetic Air, 1300C for 18h 
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MAX Phase 

Ceramics 
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Mn+1AXn Phase Ceramics 

Fe 
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Mn+1AXn Phase Ceramics 
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Mn+1AXn Phase Ceramics 

 Thermodynamically stable 
nanolaminates 

 Combine favourable 
properties of metals & 
ceramics 

 Good electrical & thermal 
conductivity* 

 Easily machinable 

 High temperature 
strength 

* Electrical resistivity:    0.2-0.7 µΩm (298K) 
   Thermal conductivity: 12-60 W/mK 
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Crack-Healing in MAX Phases 

A 

M 

X 

+ O2 
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Self-Healing in 

Ti2AlC & Ti3AlC2 
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Oxidation induced crack-healing  

in Ti3AlC2 

Healing product has similar 
properties as matrix 

Selective oxidation of Al 
2h @ 1100 oC in air 

proof of principle 

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Autonomous crack healing in MAX 

phase ceramics  

a. Crack with length of ~7 mm and average width of 5 microns  

b. Crack healed after oxidation at 1100 ºC in air for 2 h  

c. Healed zone: hardness H = 13.3±2.1 GPa and   

 Young’s modulus E = 305±38 GPa  

 Base materials: H =11.7±1.6 GPa and E =296±15 GPa  

Cracks in Ti3AlC2 can be healed via oxidation with healing product 
having similar properties 

c 

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Strength recovery after oxidation 

induced crack healing 

Oxidized for 2 h in air @ 1200 oC 
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Element distribution in healed crack 

region of Ti3AlC2 

200µm 

Crack is healed by 
formation of TiO2 and Al2O3 

 Next, to reduce the amount of TiO2 in the healing product, crack 

healing of Ti2AlC is studied  

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Oxidation behaviour of Ti2AlC 

 Oxidation product is mainly α-Al2O3 

 Only at the beginning minor amount of TiO2 is formed 

1 h  @ 1200 °C 

16 h  @ 1200 °C 

 Oxide grain size increases with oxidation time:  dt = d0 t

Oxidation in air: 

G.M. Song et al. Mat. at High Temp. 29 (2012)  205-209  
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Oxidation behaviour of Ti2AlC 

Primary selective oxidation reaction: 

4Ti2AlC + 3x O2 = 4Ti2Al1-x C + 2x Al2O3  

Fast initial growth and slow subsequent growth of α-Al2O3 

due to reduction of fast diffusion paths, i.e. oxide grain growth 

X = 2 kn × t
1

4

Oxidation kinetics can 
be described with: 

Where X is the alumina layer 
thickness, kn is a rate 
constant and t is the 

oxidation time 

G.M. Song et al. Mat. at High Temp. 29 (2012)  205-209  
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Multiple crack  

healing Ti2AlC 

(A) A through-thickness crack with a length 

of about 2.5 mm and gap of about 8 µm 

introduced after loading in 3-point 

bending (sample width ≈ 4 mm) 

 

(A) Subsequent  crack healing of first 

fracture at 1200 °C for 2 hours in air 

 

(A) Crack path after four fracture and 

healing cycles, and subsequent fracture 

 

(B) Subsequent crack healing after the fifth 

fracture and healing cycle 

 Crack runs along original healed crack path 
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Fracture thoughness evolution upon 

multiple crack healing 

 Fracture toughness decreases due to scars and remnant cracks 
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Fracture toughness at n cycles: 

‘Remnant’ crack length: 

S.B. Li, J. European Cer. Soc., 32 (2012) 1813-1820  
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Multiple crack healing 
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Multiple crack healing 

  
a
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2 (0) - K
Ic

2 (n)‘Remnant’ crack length: 

 Depends on sample dimensions and applied damage level 

• ‘remnant’ crack length 

‘remnant’ crack length 
at lower damage level 
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Other Self-Healing 

MAX-Phases? 
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Other Self-Healing MAX Phases? 
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A A 

100 µm 

A-A 

100 µm 

   1 

   2 

Cr2AlC crack damage by Knoop indent exposed at @ 1100 °C for 4 h in air 

Crack healing in Cr2AlC 

S.B. Li et al. J Am Cer Soc. (2013) 



31 Challenge the future 

Selection of MAX Phases for Self-

Healing  

 ΔG of Oxide formation 

 Diffusivity of constituents 

 Volume expansion during oxidation 

 Mechanical properties  

 Adhesion of healing agent to matrix 
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Selection of MAX Phases for Self-

Healing  

 Al containing ceramics due to an excellent CTE match, high 
oxide melting temperature and strong affinity to react with 
oxygen. 

  

 SiO2 would be a viable healing agent, though to date only 
Ti3SiC2 of the Si containing MAX-phase compounds has been 
successfully synthesized. 

 

 Of the M-Oxides ZrO2 shows beneficial crack filling properties 
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Summary 

 Crack healing by selective oxidation demonstrated for Ti3AlC2; 

healing products: Al2O3 and TiO2 

 

 Initial fast and subsequent slow formation of healing product; 

beneficial for crack healing 

 

 Multiple crack healing demonstrated; evolution of ‘remnant’ 

crack length depends on size of damage with respect to 

component dimensions 

 

 Crack healing and strength recovery of Cr2AlC is possible; 

healing product: pure Al2O3 

 

 Identification of potentially self-healing MAX phases underway 
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Crack Healing in Ti2AlC 
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@ PSI Switzerland 

 SLS in situ healing 

• Laser furnace 

• Chevron notch samples 

 

 ESRF strain analysis 

• Comparative study between different 

MAX phase 

• Diffraction experiments done right 

Second Synchrotron experiment 

 Tomography  

• 3D non destructive characterisation 

• Limits in resolution and sample size 

• Potential to help understanding self healing 

behaviour 
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Synthesis of MAX Phase Ceramics 

Spark Plasma Sintering 

• Pulsed DC current 

 Short processing time 

 Fast consolidation 

 Even heat distribution 

 High level of control 

 

HP D 25 SD 
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Source: Ceramic Bulletin 69 (1990) p. 1903 


