Self-Healing in $M_{n+1}AX_n$ Phase Ceramics

 A.-S. Farle, W. G. Sloof, and S. van der Zwaag Delft University of Technology
Department of Materials Science and Engineering Mekelweg 2, 2628 CD Delft, The Netherlands

Outline

- Concept of Self-Healing Materials
- MAX-Phase Ceramics
- > Self-Healing in $Ti_2AIC \& Ti_3AIC_2$
- > Other Self-Healing MAX-Phases?
- Summary

Concept of Self-Healing Materials

Self-Healing Ambitions *single event*

Self-Healing Ambitions *multiple healing*

Concrete bridge less than 50 years old

Self-Healing Bridge in Amsterdam *multiple healing*

Nearly 300 years old

van Hees, TUD

Concept of Self-Healing Materials

→ number of cycles

Schematic illustration of the damage development in a classical material (black line), an ideal self-healing material (blue line), and a realistic self healing material (red line)

Design your Self Healing Material

Requirements

- Flow to the crack
- Crack filling
- Bonding to crack faces

- Polymers: Micro-capsules or chemical reactions
- Asphalt: Induction heating
- Concrete: bacteria
- Ceramics: ???

Self-Healing of Oxide Ceramics with (inter-)metallic Particles

Crack induced by indentation

Self-Healing of Oxide Ceramics with (inter-)metallic Particles

SiO₂ by X-ray Micro Analysis (EDS) 1300 °C in Air for 6 hrs

Unhealed crac Al, O & Si predomina nt 10 μm

Al and Oxygen, small content of Si

Synthetic Air, 1300C for 18h

MAX Phase Ceramics

Challenge the future 12

$M_{n+1}AX_n$ Phase Ceramics

1																	18
Н	2											13	14	15	16	17	He
Li	Be		Μ		А		х					В	С	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	F1	Uup	Lv	Uus	Uuo

$M_{n+1}AX_n$ Phase Ceramics

M_{n+1}AX_n Phase Ceramics

- Thermodynamically stable nanolaminates
- Combine favourable properties of metals & ceramics
 - Good electrical & thermal conductivity*
 - Easily machinable
 - High temperature strength
- * Electrical resistivity: 0.2-0.7 $\mu\Omega m$ (298K) Thermal conductivity: 12-60 W/mK

TUDelft

Crack-Healing in MAX Phases

Self-Healing in $Ti_2AlC \& Ti_3AlC_2$

Challenge the future 17

Oxidation induced crack-healing in Ti_3AlC_2

proof of principle

G.M. Song et al. Scripta Mat. 58 (2008) 13-16

Autonomous crack healing in MAX phase ceramics

- a. Crack with length of ~7 mm and average width of 5 microns
- b. Crack healed after oxidation at 1100 °C in air for 2 h

ŤUDelft

- c. Healed zone: hardness $H = 13.3 \pm 2.1$ GPa and Young's modulus $E = 305 \pm 38$ GPa Base materials: $H = 11.7 \pm 1.6$ GPa and $E = 296 \pm 15$ GPa
- Cracks in Ti₃AlC₂ can be healed via oxidation with healing product having similar properties

G.M. Song et al. Scripta Mat. 58 (2008) 13-16

Strength recovery after oxidation induced crack healing

Oxidized for 2 h in air @ 1200 °C

Element distribution in healed crack region of Ti_3AlC_2

Crack is healed by formation of TiO_2 and Al_2O_3

ŤUDelft

→ Next, to reduce the amount of TiO₂ in the healing product, crack healing of Ti₂AIC is studied

G.M. Song et al. Scripta Mat. 58 (2008) 13-16

Oxidation behaviour of Ti₂AlC

- > Oxidation product is mainly α -Al₂O₃
- > Only at the beginning minor amount of TiO_2 is formed
- > Oxide grain size increases with oxidation time: $d_t = d_0 \sqrt{t}$

G.M. Song et al. Mat. at High Temp. 29 (2012) 205-209

Oxidation behaviour of Ti₂AlC

Oxidation kinetics can be described with:

$$X = 2\sqrt{k_n} \star^{\frac{1}{4}}$$

Where *X* is the alumina layer thickness, k_n is a rate constant and *t* is the oxidation time

Primary selective oxidation reaction:

 $4\text{Ti}_2\text{AIC} + 3x \text{ O}_2 = 4\text{Ti}_2\text{AI}_{1-x}\text{C} + 2x \text{ AI}_2\text{O}_3$

Fast initial growth and slow subsequent growth of α -Al₂O₃ due to reduction of fast diffusion paths, i.e. oxide grain growth

TUDelft G.M. Song et al. Mat. at High Temp. 29 (2012) 205-209

Multiple crack healing Ti₂AlC

- (A) A through-thickness crack with a length of about 2.5 mm and gap of about 8 µm introduced after loading in 3-point bending (sample width ≈ 4 mm)
- (A) Subsequent crack healing of first fracture at 1200 ° C for 2 hours in air
- (A) Crack path after four fracture and healing cycles, and subsequent fracture
- (B) Subsequent crack healing after the fifth fracture and healing cycle

Crack runs along original healed crack path

Fracture thoughness evolution upon multiple crack healing

Fracture toughness at *n* cycles:

$$K_{lc}(n) = \sigma Y \sqrt{\pi a_c(n)}$$

'Remnant' crack length:

 $a_r(n) = a_c(0) - a_c(n)$

$$a_r(n) \propto K_{lc}^2(0) - K_{lc}^2(n)$$

Fracture toughness decreases due to scars and remnant cracks

TUDelft S.B. Li, J. European Cer. Soc., 32 (2012) 1813-1820

Multiple crack healing

'Remnant' crack length: $a_r(n) = a_c(0) - a_c(n) \triangleright a_r(n) \propto K_{lc}^2(0) - K_{lc}^2(n)$

Multiple crack healing

Depends on sample dimensions and applied damage level

TUDelft

Other Self-Healing MAX-Phases?

Challenge the future 28

Other Self-Healing MAX Phases?

M\A	Al	Si	Ge	Ga	As	Р	S	In	Sn	Π	Pb	Cd	
т (Ti ₂ AIC Ti ₃ AIN Ti ₃ AIC ₂ Ti ₄ AIN ₃ Ti ₃ AIN ₂ *	Ti ₃ SiC ₂ Ti ₄ SiC ₃ Ti ₂ SiC [*] Ti ₅ SiC ₄ Ti ₂ SiN [*]	Ti2GeC Ti3GeC2 Ti4GeC3	Ti2GaC Ti2GaN Ti4GaC3	Ti2AsC	Ti2PC	Ti2SC	Ti _z InC Ti _z InN	Ti₂SnC Ti₃SnC₂ Ti⁊SnC6	Ti2TIC	Ti ₂ PbC	Ti2CdC	25
Cr	Cr ₂ AIC	Cr ₂ SiC Cr ₃ SiC ₂	Cr ₂ GeC	Cr2GaC Cr2GaN		Cr ₂ PC	Cr ₂ SC						8
v	V ₂ AIC V ₃ AIC ₂ V ₄ AIC ₃	V ₂ SiC V ₃ SiC ₂ *	V ₂ GeC	V ₂ GaC V ₂ GaN	V ₂ AsC	V ₂ PC	V ₂ SC						11
Sc	Sc ₂ AIC			Sc2GaC Sc2GaN				Sc ₂ InC		Sc ₂ TIC			5
Nb	Nb ₂ AIC Nb ₄ AIC ₃	Nb ₃ SiC ₂	Nb ₂ GeC	Nb ₂ GaC	Nb ₂ AsC	Nb ₂ PC	Nb ₂ SC	Nb ₂ InC	Nb ₂ SnC				9
Мо		Mo ₃ SiC ₂		Mo ₂ GaC									2
Zr	Zr ₂ AIC Zr ₂ AIN	Zr ₃ SiC ₂					Zr ₂ SC	Zr ₂ InC Zr ₂ InN	Zr ₂ SnC	Zr ₂ TIC Zr ₂ TIN	Zr ₂ PbC		9
Hf	Hf ₂ AIC Hf ₂ AIN	Hf ₃ SiC ₂					Hf ₂ SC	Hf ₂ InC	Hf ₂ SnC Hf ₂ SnN	Hf ₂ TIC	Hf ₂ PbC		9
Ta	Ta ₂ AIC Ta ₃ AIC ₂ Ta ₄ AIC ₃ Ta ₆ AIC ₅	Ta ₃ SiC ₂		Ta ₂ GaC									6
	19	13	6	12	3	4	6	7	7	5	3	1	86

Crack healing in Cr₂AlC

 Cr_2AIC crack damage by Knoop indent exposed at @ 1100 $^\circ$ C for 4 h in air

S.B. Li et al. J Am Cer Soc. (2013)

Selection of MAX Phases for Self-Healir

Sc₂O₂

Selection of MAX Phases for Self-Healing

- Al containing ceramics due to an excellent CTE match, high oxide melting temperature and strong affinity to react with oxygen.
- SiO₂ would be a viable healing agent, though to date only Ti₃SiC₂ of the Si containing MAX-phase compounds has been successfully synthesized.
- > Of the M-Oxides ZrO_2 shows beneficial crack filling properties

Summary

- Crack healing by selective oxidation demonstrated for Ti₃AlC₂; healing products: Al₂O₃ and TiO₂
- Initial fast and subsequent slow formation of healing product; beneficial for crack healing
- Multiple crack healing demonstrated; evolution of 'remnant' crack length depends on size of damage with respect to component dimensions
- Crack healing and strength recovery of Cr₂AlC is possible; healing product: pure Al₂O₃
- Identification of potentially self-healing MAX phases underway

Crack Healing in Ti₂AlC

Second Synchrotron experiment

@ PSI Switzerland

- SLS in situ healing
 - Laser furnace
 - Chevron notch samples
- ESRF strain analysis
 - Comparative study between different MAX phase
 - Diffraction experiments done right
- > Tomography
 - 3D non destructive characterisation
 - Limits in resolution and sample size
 - Potential to help understanding self healing behaviour

Synthesis of MAX Phase Ceramics

Spark Plasma Sintering

Pulsed DC current
✓ Short processing time
✓ Fast consolidation
✓ Even heat distribution
✓ High level of control

Learning curve for new materials

