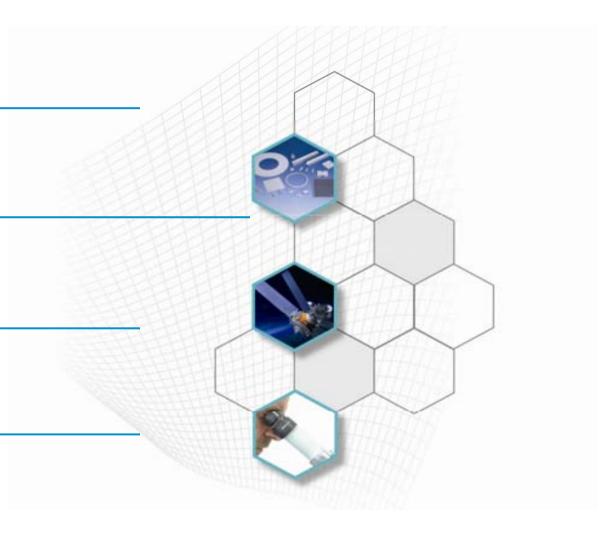
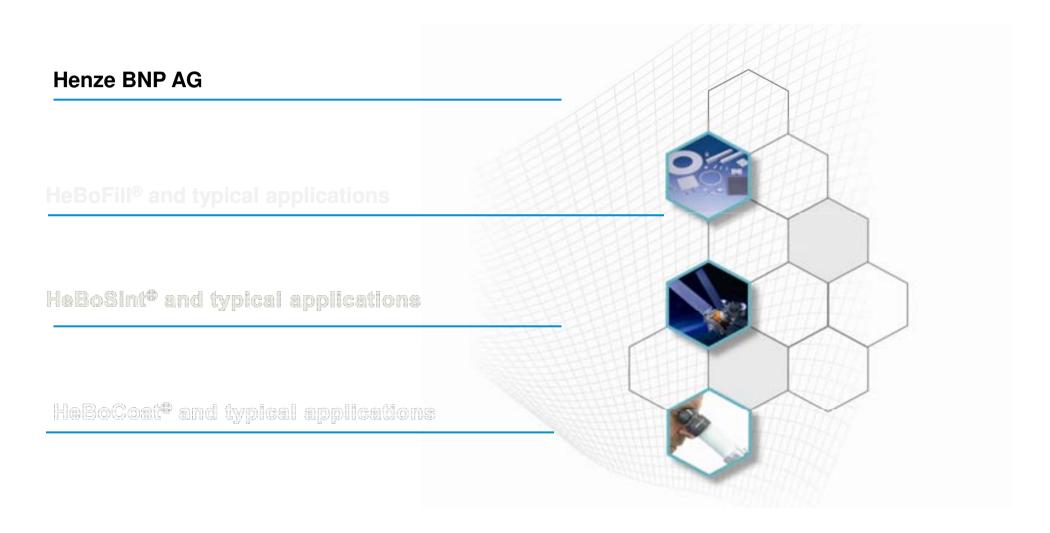


Henze Boron Nitride Products AG

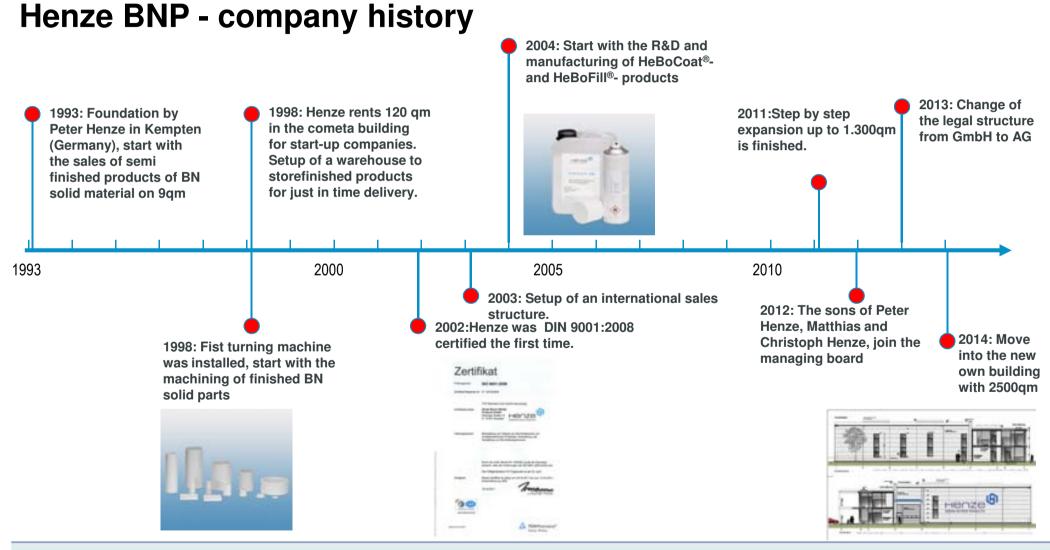
Boron Nitride in Different Applications

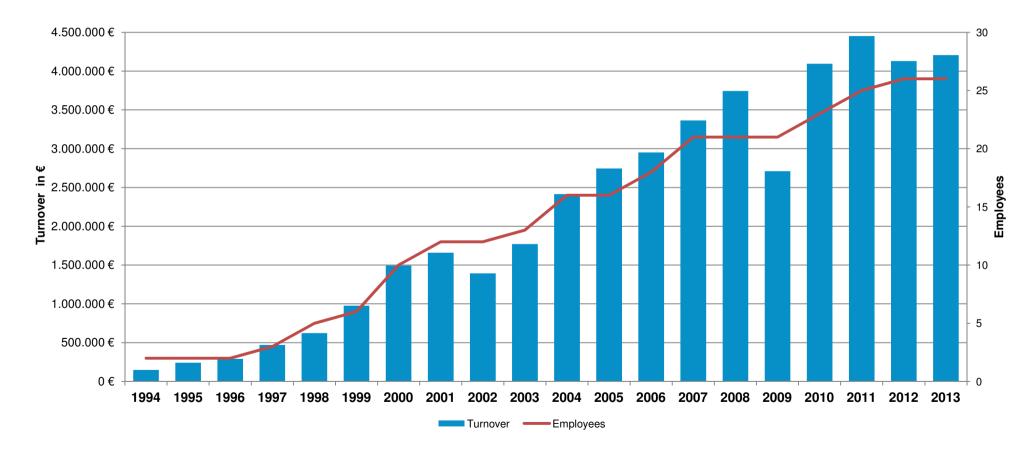

Agenda

Henze BNP AG

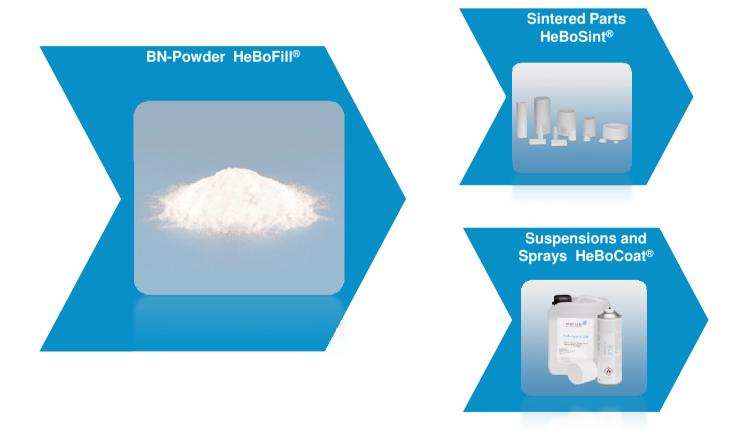

HeBoFill[®] and typical applications

HeBoSint[®] and typical applications

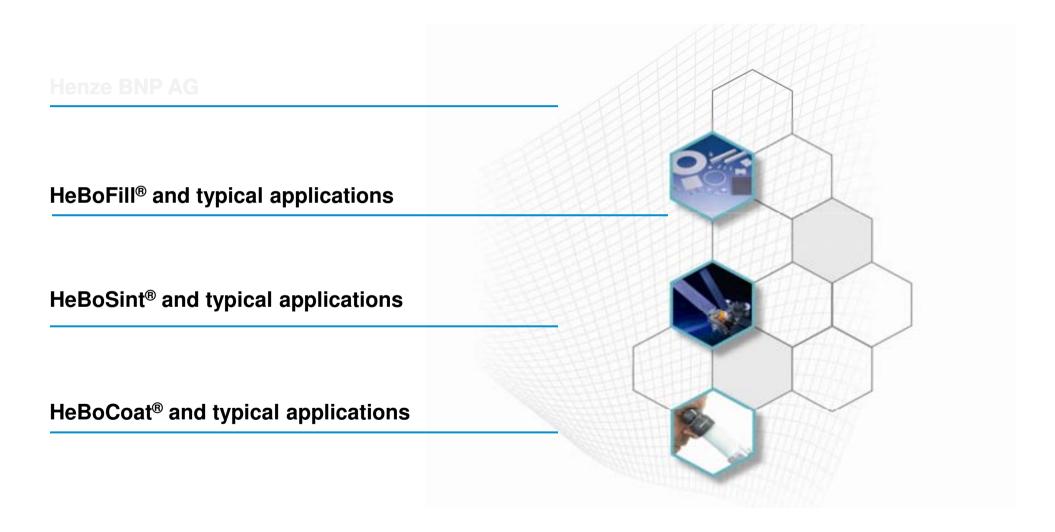

HeBoCoat[®] and typical applications



Henze BNP AG

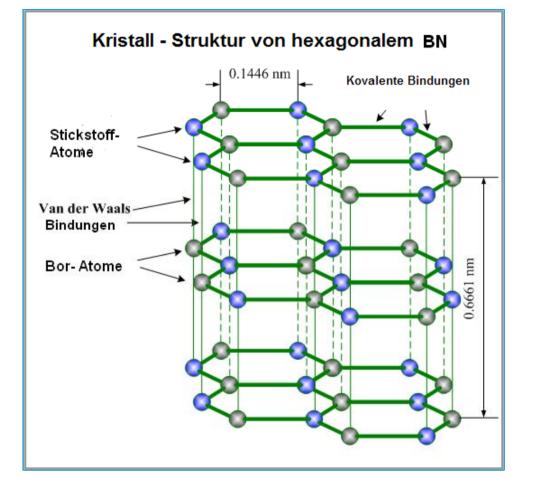


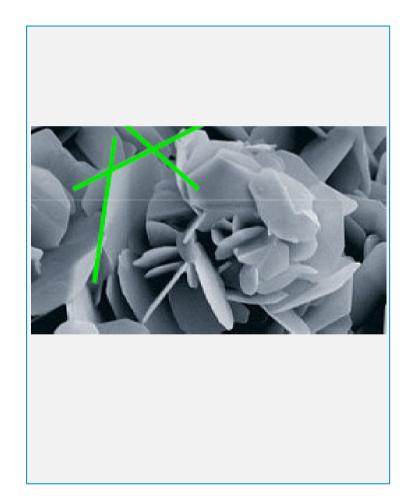
Henze BNP - Turnover and Employees



At one glace

What is Boron Nitride?


- Boron Nitrogen compound: Boron [B] + Nitrogen [N] = BN
- Powder
- Does not exist in the nature
- Synthetic process man made
- It is the basis for our HeBoSint[®]- and HeBoCoat[®]- Products



Cristal Structure of [B + N]

HeBoFill[®] Typical Boron Nitride Powders

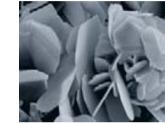
HeBoFill®-Type	82	110	482	501
Colour	white	white	white	white
Purity (B+N)	> 94.0 %	> 98.5 %	> 98,5 %	> 98.5 %
Oxigen in total	< 3.0 %	< 1,5 %	< 0,5 %	< 0.5 %
Boron oxide	< 2.0 %	< 0,1 %	< 0,1 %	< 0,1 %
Carbon	n.a.	< 0,1 %	< 0,1 %	< 0,1 %
Spec. surface area	9 m²/g	15 m²/g	6,0 m²/g	< 1 m²/g
Particle size (D ₅₀)	7,0 µm	3,0 µm	40,0 µm	45,0 µm

The data quoted in this leaflet are typical for the material. They are intended as a guide and should be used in preparing specifications. The product data may deviate from the figures given and represent our latest findings. We reserve the right to alter product data within the scope of technical progress and new developments.

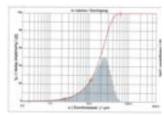
Since processing involves factors that are beyond our control, recommendations made in this leaflet should be checked by preliminary trials, especially if other companies' raw materials are being used. These recommendations do not absolve the user from the obligation of investigating the possibility of infringement of third parties' rights and if necessary, clarifying the situation.

HeBoFill[®] Typical grades

HeBoFill[®] 82

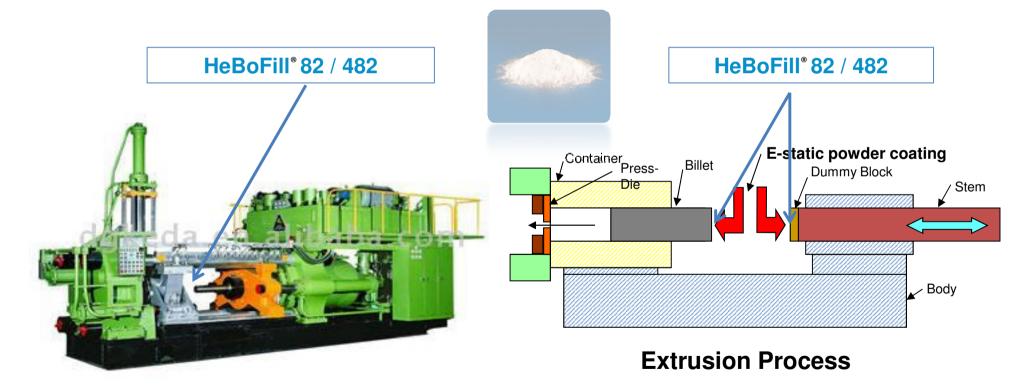

- Is especially developed as a lubricant and release agent in the aluminium extrusion industry.
- HeBoFill[®] 110
 - Is a pure boron nitriede powder with good crystallinity and a wide grain size to the boron nitride typical properties like high temperature stability, high thermal conductivity, very good lubricating and releasing effects as well as its good electrical insulation, it is suitable for a variety of advanced applications.

HeBoFill[®] 482


 Is a very high purity boron nitride powder with agglomerated structure. Due to its structure it shows a good flowability and meets therefore the requirements for most filling and transportation processes.

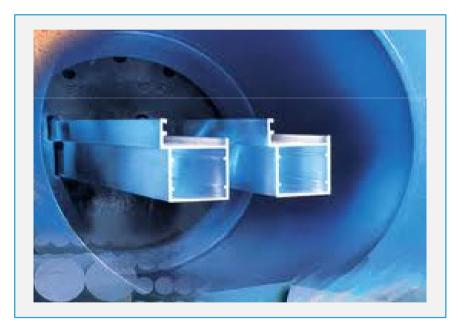
HeBoFill[®] 501

 Has a very high purity and a well crystallized single platelet structure with crystals of 40 µm. Due to the high purity and the large crystals it is particularly suitable as filler for plastic compounds in thermal management applications to increase thermal conductivity.



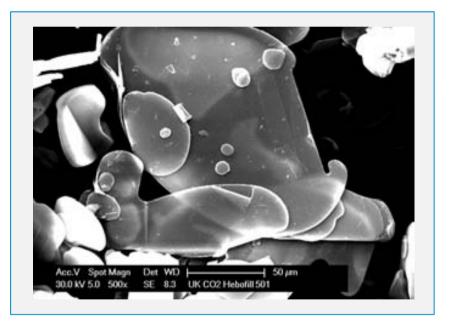
Typical Application of HeBoFill[®]

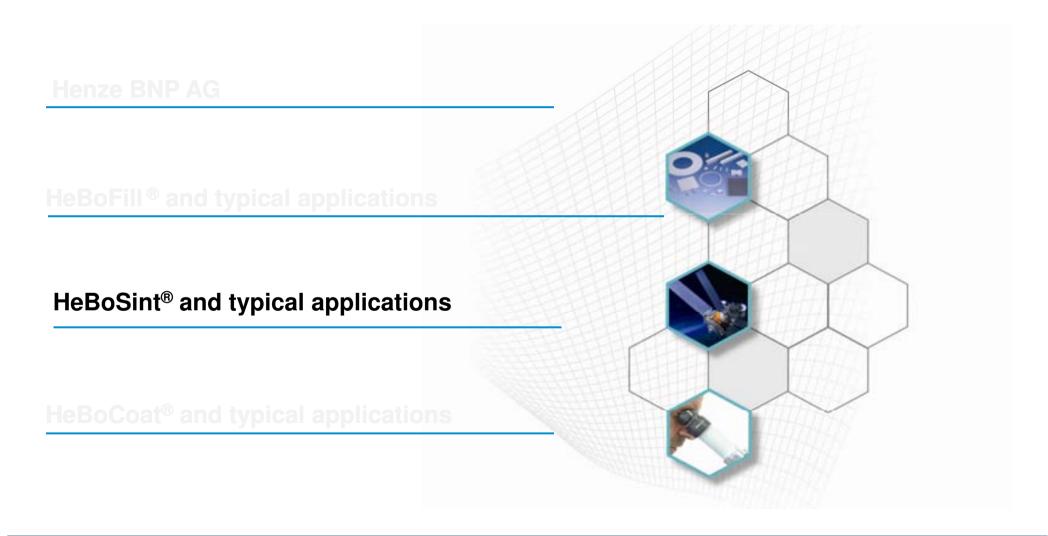
Aluminium Extrusion Process



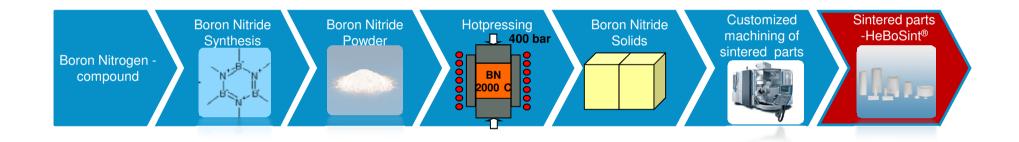
Typical Application in Aluminium Extrusion

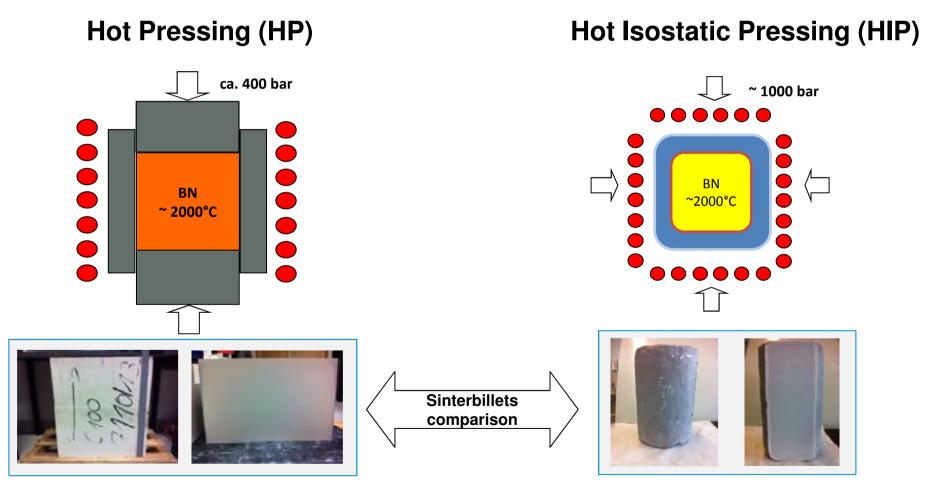
Aluminium billets and Extrusion profiles




Thermal Management

HeBoFill® improves the themal conductivity and maintains the electrical insulation





From BN Powder to HeBoSint®

Different Sinter processes

Henze BNP AG

HeBoSint[®] Overview BN Solids

HeBoSint®-Typ	P1	00	C1	00	D	00	01	20	01	40	07	40	80	20
Binder	no	ne	Calcium	n Borate	n	one	no	ne	Boric	Oxide	Boric	Oxide	no	ne
Composition	hE	BN	hE	3N	h	BN	hBN+Si	C+ZrO ₂	hBN+Si	C+ZrO ₂	hBN+Si	C+ZrO ₂	hBN⊦	-SiO ₂
Typ. Density (g /cm³)	1	,9	2	,0	2	2,0	2	,4	2,	9			2,	,2
Orientation dependence	Aniso	tropic	Anisotropic Isotropic		Anisotropic Anisotropic		Anisotropic		Anisotropic					
Thermal Properties														
Pressing direction	П	\perp	II	\bot	II	Т	II	\bot	II	\perp	II	\bot	II	T
Spec. Heat at 20°C (J/gK)	0	,5	0,6 0,6		0,6 0,6		0,6		0,8					
Therm. Conductivity at 20°C (W/mK)	20	30	43	48	2	25	28	45	24	34	24	34	10	30
Therm. Expansion (10 ⁻⁶ / K) RT – 1500°C	0,5	1,0	3,0	4,0	3	3,0	3,0	4,5	4	8	4	6	0,2	3,0
Max. Use Temperature (°C) - Oxidizing Atmosphere - Inert Atmosphere - Vaccuum Atmosphere	~ 1 ~ 2 < 2	300	~ 1	000 600 600	~ 2	000 2300 2300	~ 1) ~ 1; ~ 1;	800	~ 10 ~ 18 ~ 18	300	~ 1(~ 1) ~ 1)	800	~1(~ 1! ~ 1!	500
			Ele	ctrical and	d Mechan	ical Prope	erties							
Pressing direction	П	\perp	II	\bot	II	Т	II	\bot	II	\perp	II	\bot	II	T
Spec. Electr. Resistivity (Ohm cm)	> 1	0 ¹²	> 10 ¹² > 10 ¹²		10 ¹²	> 10 ¹²		> 10 ¹²		> 10 ¹²		> 10 ¹⁴		
Bending Strength (MPa)	18	15	40	35	(30	70	40	120	80	144	107	65	35
Young's Modulus (GPa)	14	11	30	25	2	23	35	20	45	30	71	50	85	75
Compressive strength (MPa)	27	22	60	52	4	45	140	60	240	120	280	160	130	50

The data quoted in this leaflet are typical for the material. They are intended as a guide and should be used in preparing specifications. The product data may deviate from the figures given and represent our latest findings. We reserve the right to alter product data within the scope of technical progress and new developments.

Since processing involves factors that are beyond our control, recommendations made in this leaflet should be checked by preliminary trials, especially if other companies' raw materials are being used. These recommendations do not absolve the user from the obligation of investigating the possibility of infringement of third parties' rights and if necessary, clarifying the situation.

HeBoSint[®] sintered materials

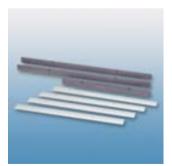
HeBoSint® P

• High purity material for high temperature application

HeBoSint[®] C

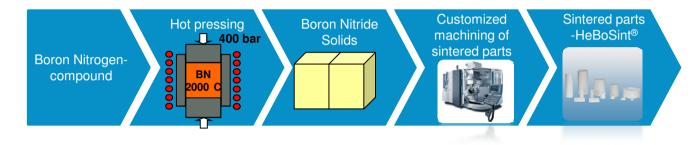
Calcium borate bonded material, economic quality for various applications

HeBoSint® D

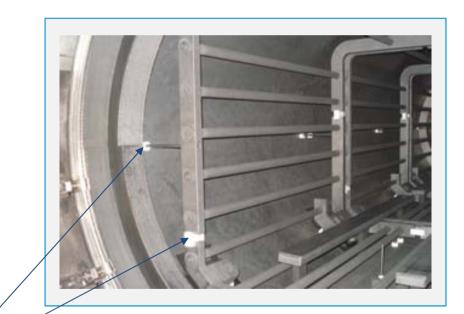

- Hot isostatic pressed material, isotropic, without any binder, high purity

HeBoSint® O

- Hot pressed composite material (BN + ZrO2) with higher wear resistance and hardness
- Hot pressed composite material (BN + SiO2) with higher strength and high electrically insulation



Typical Properties of HeBoSint®

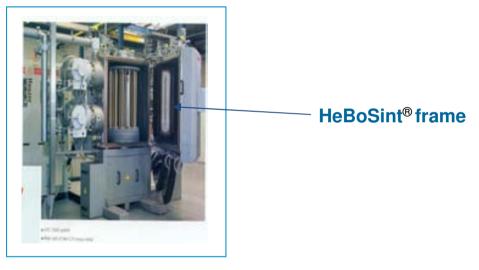

- Very high temperature stability up to 2.300 C.
- Chemical stability
- Not wetted by aluminum and most other molten metals
- Electrically insulating
- Highly thermal conductivity
- Physiologically "safe to use"

Typical applications of HeBoSint[®] in high temperature furnaces

HENZE BNP AG Insulators for high temperatur furnaces

Graphical material on the authority of PVA TePla AG

HeBoSint®

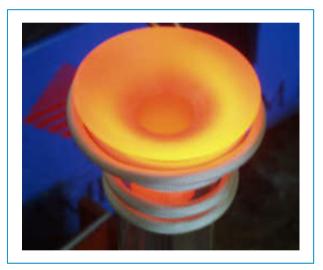

Typical application in PVD ARC

Examples

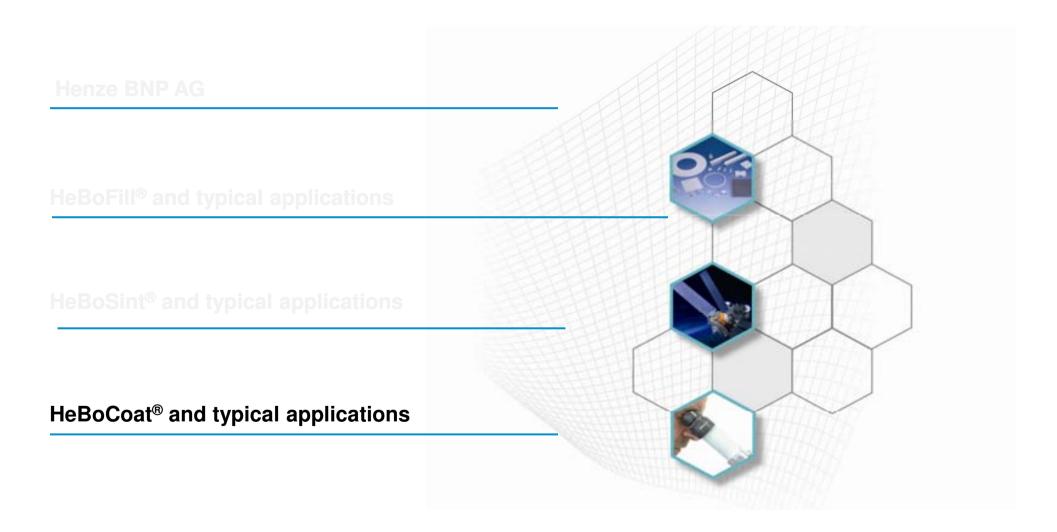
HeBoSint[®] frame

Application

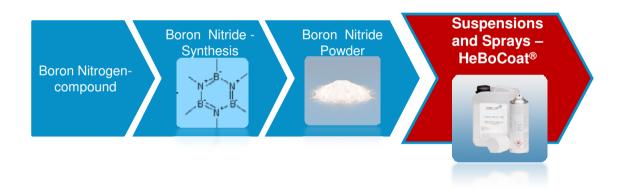
PVD ARC equipment


Typical application in smelting installations

Example


HeBoSint[®] crucibles

Application


Sintertechnology

From BN Powder to HeBoCoat®

HeBoCoat[®] Typical Water-based Boron Nitride Coatings

HeBoCoat®-Typ	~10W	~alucast	~433W
Basis	Water	Water	Water
Binder	Aluminium oxide	Aluminium oxide	Boron oxide
Max. Temp. Binder in C	> 300	>300	> 300
Solid content	35%	35%	15%
Colour	Grey	Red	White
Sticking behaviour	+	+	+
Releasing behaviour	++	++	++
Lubrication	o	0	++
Processing	P/S	P/S	P/S
end: P = Painting, S = Spraying	++ very good + good	o medium - I	ess

The data quoted in this leaflet are typical for the material. They are intended as a guide and should be used in preparing specifications. The product data may deviate from the figures given and represent our latest findings. We reserve the right to alter product data within the scope of technical progress and new developments.

Since processing involves factors that are beyond our control, recommendations made in this leaflet should be checked by preliminary trials, especially if other companies' raw materials are being used. These recommendations do not absolve the user from the obligation of investigating the possibility of infringement of third parties' rights and if necessary, clarifying the situation.

Typical Industries for the Application

Aluminium Casting

Application of HeBoCoat[®] alucast / 10W

Where to apply the Boron Nitride Suspension HeBoCoat[®] alucast / 10W?

- Continuous casting
 Production of logs and slabs
 Coating of refractory launders and other materials
 Protection from the melt, releasing effect, non sticking (liquid aluminium tends to stick!)
- Coating of casting ladles (liquid aluminium attacks steel!)

automatic ladle

Application of HeBoCoat[®] alucast / 10W

Where to apply the Boron Nitride Suspension HeBoCoat® alucast / 10W?

Coating of the casting table, HeBoCoat[®] prevent sticking of Aluminium

Application of HeBoCoat[®] 433W

Where to apply the Boron Nitride Suspension HeBoCoat[®] 433W?

Ingot casting

- Molds have to be coated for protection against the melt
- Launders, to guide the aluminium flow

HeBoCoat[®] Ethanol-based Boron Nitride Coatings

HeBoCoat®	~20E* / 21E	~400E*/401E	~400EBA
Basis	Ethanol	Ethanol	Eth/Acet
Binder	Polymer	Silikat	Silikat
Max. Temp. Binder in C	< 300	> 300	> 300
Solid content	20%	12,5%	12,5%
Color	white	white	white
Sticking behaviour	+	++	++
Releasing behaviour	++	++	++
Lubrication	++	+	+
Processing	P/S/D	P/S/D	P / S / D
Legend: $P = Painting, S = Spraying, D = Dipping$	++ very good +	good o medium	

The data quoted in this leaflet are typical for the material. They are intended as a guide and should be used in preparing specifications. The product data may deviate from the figures given and represent our latest findings. We reserve the right to alter product data within the scope of technical progress and new developments.

Since processing involves factors that are beyond our control, recommendations made in this leaflet should be checked by preliminary trials, especially if other companies' raw materials are being used. These recommendations do not absolve the user from the obligation of investigating the possibility of infringement of third parties' rights and if necessary, clarifying the situation.

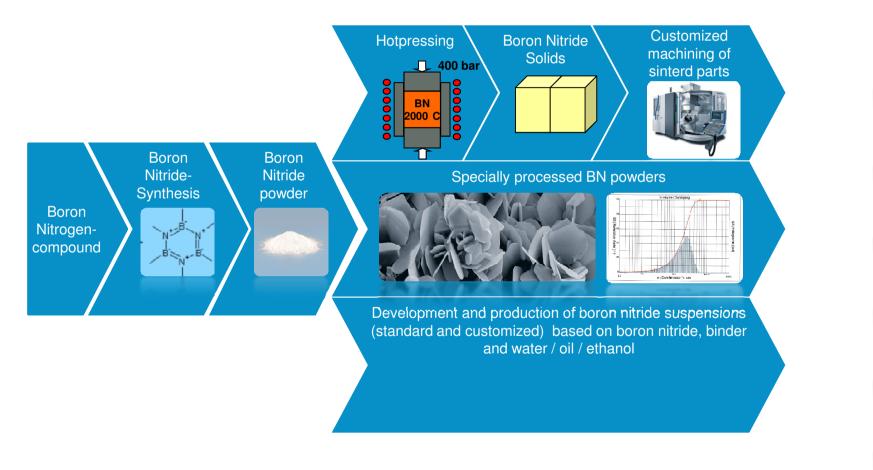
Application of HeBoCoat[®] 21E

Where to apply the Boron Nitride Spray HeBoCoat[®] 21E?

Al Extrusion to improve the Aluminium flow during initial pressing

Application of HeBoCoat[®] 401E/401EBA

Where to apply the Boron Nitride Spray HeBoCoat[®] 401E/401EBA?


Welding to prevent sticking of sputters

Management summary

Dank u well! Thank you!